本文へスキップします。

H1

国内研究者論文詳細

日本人論文紹介:詳細

2025/05/23

時計タンパク質KaiCのリン酸化は自己阻害メカニズムによって制御される

論文タイトル
The priming phosphorylation of KaiC is activated by the release of its autokinase autoinhibition
論文タイトル(訳)
時計タンパク質KaiCのリン酸化は自己阻害メカニズムによって制御される
DOI
10.1093/pnasnexus/pgaf136
ジャーナル名
PNAS Nexus
巻号
PNAS Nexus, Volume 4, Issue 5, May 2025, pgaf136
著者名(敬称略)
古池 美彦 森 俊文 秋山 修志 他
所属
自然科学研究機構 分子科学研究所 協奏分子システム研究センター 階層分子システム解析研究部門
著者からのひと言
細胞内環境を保つためには、各種酵素の活性制御が必須です。そのため、酵素と基質の出会いの確率の調節や、基質との親和性の制御など、複数のメカニズムが働いています。本研究では、概日リズムという「1日」の時間スケールのなかで、基質ATPを結合しながら、そのうえで活性部位の静電環境を調整することで活性制御する時計タンパク質KaiCの特異なメカニズムが明らかになりました。反応速度の変化が計時機能に直結するKaiCでは、夾雑系の影響が少ない分子内でのリン酸化制御が有用であったと考えられます。

抄訳

シアノバクテリアの概日リズムは、時計タンパク質KaiCのT432・S431における周期的な自己リン酸化・自己脱リン酸化によって生じ、とりわけリン酸化の進行にはKaiAの関与が必須であると考えられてきた。しかしながらKaiCのリン酸化がいかに活性化・不活性化されるのか、そのメカニズムは明らかになっていない。我々は、KaiA非存在下でもT432のリン酸化が起こるものの、その反応速度は非常に遅く、KaiC自身が活性を抑制していることを見出した。この自己阻害の仕組みに迫るため、KaiCの立体構造データを用いて計算機シミュレーションを行った。その結果、T432がアデノシン三リン酸の末端リン原子への求核攻撃に適した位置にあること、そして反応の進行に必要な一般塩基であるE318の触媒作用がR385によって静電的に抑制されていることが明らかになった。そこでKaiC変異体を用いてE318にかかる抑制の程度を検証したところ、KaiAの結合に伴ってR385が遊離することで自己阻害が解除されることが分かった。

論文掲載ページへ